Algebra 1 Senior Final Exam Review

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.

Find the slope and *y*-intercept of the line.

1.
$$14x + 4y = 24$$

a.
$$-\frac{2}{7}$$
; 6

b.
$$-\frac{7}{2}$$
; 6

c.
$$-\frac{7}{2}$$
; $\frac{1}{6}$

d.
$$\frac{7}{2}$$
; -6

Match the equation with its graph.

2.
$$-7x + 7y = -49$$

a.

c.

b.

d.

Are the graphs of the lines in the pair parallel? Explain.

$$y = 5x + 6$$

$$-18x + 3y = -54$$

- a. No, since the slopes are different.
- b. Yes, since the slopes are the same and the *y*-intercepts are different.
- c. No, since the y-intercepts are different.
- d. Yes, since the slope are the same and the *y*-intercepts are the same.

Tell whether the lines for each pair of equations are parallel, perpendicular, or neither.

4.
$$y = -\frac{1}{2}x - 11$$

$$16x - 8y = -8$$

a. neither

- b. perpendicular
- c. parallel
- 5. Which graph shows the best trend line for the following data.

Practice (weeks)	6	8	10	12	14	16	18
Score	15.5	21.5	26.5	34	33	37	41

a.

c.

b.

d.

Write an equation for each translation of y = |x|.

a.
$$y = |x + 6|$$

a.
$$y = |x + 6|$$
 b. $y = |x - 6|$ c. $y = |x/+6|$ d. $y = |x/-6|$

c.
$$y = |x| + 6$$

d.
$$y = |x| - 6$$

Graph each equation by translating y = |x|.

7.
$$y = |x + 6|$$

c.

b.

d.

8. Tom has a collection of 30 CDs and Nita has a collection of 18 CDs. Tom is adding CD a month to his collection while Nita is adding 5 CDs a month to her collection. Write and graph a system to find the number of months after which they will have the same number of CDs. Let x represent the number of months and y the number of CDs.

a.
$$y = x + 30$$

$$y = 5x + 18$$

c.
$$y = x + 30$$

 $y = 18x + 5$

$$y = 18x + 5$$

3 months

b.
$$y = -x + 30$$

$$y = 5x + 18$$

1 month

d.
$$y = x + 18$$

2 months

33 months

9. Which graph represents the following system of equations?

$$y = 3x + 3$$
$$y = -x - 3$$

$$y = -x - 3$$

a.

c.

b.

d.

Solve the system of equations using substitution.

____ 10.
$$y = 2x + 3$$

$$y = 3x + 1$$

$$y = 3x + 1$$

a. $(-2, -1)$

d.
$$(-2, -5)$$

11.
$$y = x + 6$$

 $y = -2x - 3$

$$y = -2x = 0$$

a. $(1, 7)$

c.
$$\left(-6, \frac{3}{2}\right)$$

Graph the inequality.

____ 12.
$$y \ge 2x - 2$$

a.

c.

b.

d.

Solve the system of linear inequalities by graphing.

____ 13. $y \le x + 4$

$$2x+y\leq -4$$

a.

c.

b.

Simplify the expression.

b.
$$-\frac{1}{-1^6}$$
 c. $\frac{1}{6}$ d. $-\frac{1}{6}$

15.
$$7x^{-8} \cdot 6x^{-1}$$

b.
$$\frac{1}{42x^5}$$
 c. $42x^{11}$ d. $13x^{-5}$

c.
$$42x^{11}$$

____ 16.
$$(k^2)^4$$
a. k^5

17. Chase scored 14 points on Monday, and he doubled his score each day thereafter. How many points did he score on Thursday?

18. Which number is NOT written in scientific notation?

a.
$$3 \times 10^{-8}$$

b.
$$6.7 \times 10^3$$

c.
$$8.7 \times 10^{-5}$$

a.
$$3 \times 10^{-8}$$
 b. 6.7×10^{3} c. 8.7×10^{-5} d. 25.67×10^{-2}

19. Which number is written in scientific notation?
a.
$$7.8 \times 10^{-5}$$
 b. 3.4×100^2 c. 0.84×10^6 d. -5×10^{-12}

a.
$$7.8 \times 10^{-5}$$

b.
$$3.4 \times 100^2$$

c.
$$0.84 \times 10^6$$

d.
$$-5 \times 10^{-12}$$

Write the number in scientific notation.

20. 8,670,000,000

a.
$$0.867 \times 10^{10}$$

a.
$$0.867 \times 10^{10}$$
 b. 86.7×100^{8} c. 8.67×10^{9} d. 8.67×10

c.
$$8.67 \times 10^9$$

$$d. \quad 8.67 \times 10$$

a.
$$5.4 \times 10^4$$
, 5.4×10^3 , 4.5×10^4 c. 5.4×10^3 , 5.4×10^4 , 4.5×10^4 d. 4.5×10^4 , 5.4×10^3 , 5.4×10^3 , 5.4×10^4 , 5.4×10^4

c.
$$5.4 \times 10^3$$
, 5.4×10^4 , 4.5×10^4

b.
$$5.4 \times 10^3$$
, 4.5×10^4 , 5.4×10^4

d.
$$4.5 \times 10^4$$
, 5.4×10^3 , 5.4×10^6

Simplify the expression. Write the answer using scientific notation.

a.
$$2.8 \times 10^{-9}$$

c.
$$2.8 \times 10^{-7}$$

d.
$$0.28 \times 10^{-9}$$

- 23. Radio signals travel at a rate of 3×10^8 meters per second. How many seconds will it take for a radio signal to travel from a satellite to the surface of the Earth if the satellite is orbiting at a height of 3.6×10^7 meters?
 - a. 8.3 seconds

c. 1.08×10^{16} seconds

b. 1.2×10^{-1} seconds

d. 10.8×10^{15} seconds

24. Suppose an investment of \$6,600 doubles in value every 8 years. How much is the investment worth after 40 years?

a. \$211,200

c. \$66,000

b. \$105,600

d. \$528,000

Match the table with the function that models the data.

25.

x	у
1	4
2	16
3	64
4	256

a.
$$y = x^4$$

b.
$$y = 4x$$

c.
$$y = 4^{x}$$

Match the function rule with the graph of the function.

 $y = 10 \cdot 3^x$

a.

c.

b.

d.

____ 27.
$$y = \frac{2}{5} \cdot 5^x$$

a.

c.

b.

d.

28. Which of the quadratic functions has the narrowest graph?
a.
$$y = -x^2$$
 b. $\frac{1}{y = -x^2}$ c. $y = 4x$

a.
$$y = -x^2$$

b.
$$y = \frac{1}{4}x$$

c.
$$v = 4x^2$$

$$y = \frac{1}{9}x^2$$

a.
$$y = \frac{1}{3}x^2$$

b.
$$y = -4x^3$$

c.
$$y = 0.3x^2$$

b.
$$y = -4x^2$$
 c. $y = 0.3x^2$ d. $y = -\frac{4}{5}x^2$

- 30. If |m| > |n|, then the graph of $y = mx^2$ is _____ narrower than $y = nx^2$.
 - a. always

b. sometimes

c. never

- 31. A parabola ____ has an axis of symmetry.
 - a. always

b. sometimes

c. never

32. Graph $f(x) \le x^2 - x - 1$.

b.

d.

- 33. Simplify $\sqrt{\frac{144}{49}}$.
 - a. 144
- b. $\frac{12}{49}$

- 34. The principal square root of a positive real number is _____ negative.
 - a. always

- b. sometimes
- c. never

- _ 35. Is $\sqrt{\frac{5}{8}}$ rational or irrational?
 - a. rational

b. irrational

- 36. Is $\sqrt{13}$ rational or irrational?

- b. irrational
- 37. The expression $\sqrt{\frac{a}{b}}$ is _____ rational if a and b are integers and $b \neq 0$.

- b. sometimes
- 38. The quadratic equation $x^2 + a = 0$, where a > 0, _____ has at least one real number solution.

- b. sometimes

Solve the equation using square roots.

c.
$$\pm \sqrt{24}$$

Solve the equation by factoring.

40.
$$c^2 - 4c = 0$$

a.
$$c = 0$$
 or $c = -4$

b.
$$c = 0 \text{ or } c = \sqrt{4}$$

c.
$$c = 0$$
 or $c = 4$

d.
$$c = 1 \text{ or } c = -\sqrt{4}$$

41. The expression
$$ax^2 - bx = 0$$
 has the solution $x = 0$.
a. always b. sometimes

Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth.

- $42. \quad 5y^2 8y = 2$
 - a. 1.82, -0.22
- b. 11.2, –9.6
- c. 3.64, -0.44 d. 0.22, -1.82
- 43. For which discriminant is the graph possible?

a.
$$b^2 - 4ac = -4$$

b.
$$b^2 - 4ac = 3$$
 c. $b^2 - 4ac = 0$

c.
$$b^2 - 4ac = 0$$

44. Graph the set of points. Which model is most appropriate for the set? (-6, -1), (-3, 2), (-1, 4), (2, 7)

c.

linear

b.

d.

quadratic

linear

45. Graph the set of points. Which model is most appropriate for the set? (-2, 10), (-1,1), (1, 1), (2, 10)

a.

c.

linear

d.

quadratic

exponential

46. Which kind of function best models the data in the table? Graph the data and write an equation to model the data.

Х	y			
0	-1			
1	-2			
2	-3			
3	-4			
4	-5			

a.

c.

exponential; $y = 3^x - 1$

linear; y = -x - 1

b.

d.

quadratic;
$$y = x^2 - 1$$

linear;
$$y = x - 1$$

- 47. In an exponential model, the y values _____ decrease as the x values increase.
 - a. always

- b. sometimes
- c. never
- 48. The equation $x^2 + n = 0$ has at least one real number solution when n > 0.
 a. always b. sometimes c. never

Short Answer

49. Gloria makes and sells handmade greeting cards. The scatter plot shows the number of cards she made over a 10-hour period. Find the equation of a trend line and use it to predict the number of cards Gloria can make in 12 hours.

50. Order 34×10^{2} , 1.2×10^{7} , 8.11×10^{-3} , and 435 from least to greatest.