Geometry Final Exam Review

Multiple Choice

Identify the letter of the choice that best completes the statement or answers the question.
\qquad 1. Judging by appearance, classify the figure in as many ways as possible.

a. rectangle, square, quadrilateral, parallelogram, rhombus
b. rectangle, square, parallelogram
c. rhombus, trapezoid, quadrilateral, square
d. square, rectangle, quadrilateral
\qquad 2. Which statement is true?
a. All quadrilaterals are rectangles.
b. All quadrilaterals are squares.
c. All rectangles are quadrilaterals.
d. All quadrilaterals are parallelograms.
3. Which Venn diagram is NOT correct?
a.

c.

b.

d.

\qquad 4. Judging by appearances, which figure is a trapezoid?
a.

c.

b.

d.

\qquad 5. $W X Y Z$ is a parallelogram. Name an angle congruent to $\angle W Z Y$.

a. $\angle Z X Y$
b. $\angle X W Z$
c. $\angle Z X W$
d. $\angle W X Y$
\qquad 6. What is the missing reason in the proof?

Given: parallelogram $A B C D$ with diagonal $\overline{B D}$
Prove: $\triangle A B D \cong \triangle C D B$

Statements	Reasons	
1. $\overline{A D} \\| \overline{B C}$	1. Definition of parallelogram	
2. $\angle A D B \cong \angle C B D$	2. Alternate Interior Angles Theorem	
3. $\overline{A B} \\| \overline{C D}$	3. Definition of parallelogram	
4. $\angle A B D \cong \angle C D B$	4. Alternate Interior Angles Theorem	
5. $\overline{D B} \cong \overline{D B}$	5. Reflexive Property of Congruence	
6. $\triangle A B D \cong \triangle C D B$	6. ?	

a. Reflexive Property of Congruence
c. Alternate Interior Angles Theorem
b. ASA
d. SSS
7. Based on the information given, can you determine that the quadrilateral must be a parallelogram? Explain.

Given: $\overline{X Y} \cong \overline{W Z}$ and $\overline{X W} \cong \overline{Y Z}$

a. No; you cannot determine that the quadrilateral is a parallelogram.
b. Yes; two opposite sides are both parallel and congruent.
c. Yes; opposite sides are congruent.
d. Yes; diagonals of a parallelogram bisect each other.
8. Which statement can you use to conclude that quadrilateral $X Y Z W$ is a parallelogram?

a. $\overline{X W} \cong \overline{Y Z}$ and $\overline{X Y} \cong \overline{W Z}$
b. $\overline{X W} \cong \overline{W Z}$ and $\overline{X Y} \cong \overline{W Z}$
c. $\overline{Y N}=\overline{N X}$ and $\overline{X N}=\overline{N Y}$
d. $\overline{X W} \cong \overline{Y Z}$ and $\overline{X Y} \cong \overline{Y Z}$
9. In the rhombus, $m \angle 1=15 x, m \angle 2=x+y$, and $m \angle 3=30 z$. Find the value of each variable. The diagram is not to scale.

a. $x=12, y=84, z=20$
b. $x=6, y=174, z=20$
c. $x=6, y=84, z=10$
d. $x=12, y=174, z=10$
10. Lucinda wants to build a square sandbox, but has no way of measuring angles. Explain how she can make sure that the sandbox is square by only measuring length.
a. Arrange four equal-length sides so the diagonals bisect each other.
b. Arrange four equal-length sides so the diagonals are equal lengths also.
c. Make each diagonal the same length as four equal-length sides.
d. Not possible; Lucinda has to be able to measure a right angle.
11. Which description does NOT guarantee that a quadrilateral is a parallelogram?
a. a quadrilateral with both pairs of opposite sides congruent
b. a quadrilateral with the diagonals bisecting each other
c. a quadrilateral with consecutive angles supplementary
d. quadrilateral with two opposite sides parallel
12. Which description does NOT guarantee that a trapezoid is isoscles?
a. congruent diagonals
b. both pairs of base angles congruent
c. congruent bases
d. congruent legs
13. In quadrilateral $M N O P, \angle M \cong \angle N$. Which of a parallelogram, trapezoid, or rhombus could quadrilateral MNOP be?
a. parallelogram or rhombus
c. trapezoid only
b. parallelogram only
d. any of the three
14. For the parallelogram, find coordinates for P without using any new variables.

a. $(a-c, c)$
b. (c, a)
c. $(a+c, b)$
d. (c, b)
15. Which diagram shows the most useful positioning of a square in the first quadrant of a coordinate plane?
a.

C.

b.

d.

16. Which diagram shows the most useful positioning and accurate labeling of a kite in the coordinate plane?
a.

c.

b.

d.

Find the area. The figure is not drawn to scale.
17.

a. $1188 \mathrm{in}^{2}{ }^{2}$
b. 69 in. ${ }^{2}$
c. 138 in. 2
d. $1440 \mathrm{in}^{2}{ }^{2}$
18. When designing a building, you must be sure that the building can withstand hurricane-force winds, which have a velocity of $73 \mathrm{mi} / \mathrm{h}$ or more. The formula $F=0.004 A v^{2}$ gives the force F in pounds exerted by a wind blowing against a flat surface. A is the area of the surface in square feet, and v is the wind velocity in miles per hour. How much force is exerted by a wind blowing at $81 \mathrm{mi} / \mathrm{h}$ against the side of the building shown?

a. about 54 tons
c. about 10,826 tons
b. about 5 tons
d. about 28 tons
19. A fly lands at random at a point on the grid. Find the probability of the fly landing on the figure.

a. $\frac{9}{35}$
b. $\frac{9}{70}$
c. $\frac{18}{70}$
d. $\frac{9}{61}$

Find the length of the missing side. Leave your answer in simplest radical form.
20.

a. $\quad \sqrt{17} \mathrm{~m}$
b. 113 m
c. $\sqrt{113} \mathrm{~m}$
d. $\sqrt{71} \mathrm{~m}$
21.

6
Not drawn to scale
a. $3 \sqrt{29} \mathrm{~cm}$
b. $3 \sqrt{21} \mathrm{~cm}$
c. $\sqrt{21} \mathrm{~cm}$
d. 3 cm

Find the value of the variable(s). If your answer is not an integer, leave it in simplest radical form.
22.

12
Not drawn to scale
a. 2
b. $12 \sqrt{3}$
c. $\frac{1}{2}$
d. $6 \sqrt{3}$
23. Find the area of a regular hexagon with side length of 8 m . Round your answer to the nearest tenth.
a. $\quad 55.4 \mathrm{~m}^{2}$
b. $\quad 166.3 \mathrm{~m}^{2}$
c. $83.1 \mathrm{~m}^{2}$
d. $288 \mathrm{~m}^{2}$
24. You are planning to use a ceramic tile design in your new bathroom. The tiles are blue and white equilateral triangles. You decide to arrange the blue tiles in a hexagonal shape as shown. If the side of each tile measures 7 centimeters, what will be the exact area of each hexagonal shape?

7 cm
a. $\quad 73.5 \sqrt{3} \mathrm{~cm}^{2}$
b. $98 \sqrt{3} \mathrm{~cm}^{2}$
c. $21 \mathrm{~cm}^{2}$
d. $1029 \mathrm{~cm}^{2}$
25. Find the area of an equilateral triangle with radius $8 \sqrt{3} \mathrm{~m}$. Leave your answer in simplest radical form.
a. $96 \sqrt{3} \mathrm{~m}^{2}$
b. $144 \sqrt{3} \mathrm{~m}^{2}$
c. $18 \sqrt{3} \mathrm{~m}^{2}$
d. $12 \sqrt{3} \mathrm{~m}^{2}$
26. Name the minor arc and find its measure.

a. $\operatorname{arc} A D B ; 30^{\circ}$
b. $\operatorname{arc} A B ; 115^{\circ}$
c. $\operatorname{arc} A D B ; 245^{\circ}$
d. $\operatorname{arc} A B ; 245^{\circ}$
27. A team in science class placed a chalk mark on the side of a wheel and rolled the wheel in a straight line until the chalk mark returned to the same position. The team then measured the distance the wheel had rolled and found it to be 35 cm . To the nearest tenth, what is the area of the wheel?
a. $\quad 195.1 \mathrm{~cm}^{2}$
b. $97.5 \mathrm{~cm}^{2}$
c. $\quad 27.5 \mathrm{~cm}^{2}$
d. $390.1 \mathrm{~cm}^{2}$
28. Find the area of the triangle. Leave your answer in simplest radical form.

Not drawn to scale
a. $94 \sqrt{14} \mathrm{~cm}^{2}$
b. $18 \sqrt{19} \mathrm{~cm}^{2}$
c. $184 \sqrt{14} \mathrm{~cm}^{2}$
d. $9 \sqrt{19} \mathrm{~cm}^{2}$
29. If $\frac{g}{h}=\frac{6}{5}$, which equation must be true?
a. $\quad 5 h=6 g$
b. $\frac{h}{g}=\frac{5}{6}$
c. $\frac{h}{6}=\frac{g}{5}$
d. $g h=6 \times 5$
30. If $\frac{x+3}{3}=\frac{y+2}{2}$, then $\frac{x}{3}=$ \qquad .
a. $y+1$
b. $\frac{y}{3}$
c. $\frac{y}{2}$
d. $y-1$
31. Solve the extended proportion $\frac{x}{9}=\frac{4}{y}=\frac{y}{36}$ for x and y with $x>0$ and $y>0$.
a. $x=6 ; y=6$
b. $x=2 ; y=18$
c. $x=3 ; y=12$
d. $x=8 ; y=24$
32. The two rectangles are similar. Which is a correct proportion for corresponding sides?

a. $\frac{12}{8}=\frac{x}{4}$
b. $\frac{12}{4}=\frac{x}{8}$
c. $\frac{12}{4}=\frac{x}{20}$
d. $\frac{4}{12}=\frac{x}{8}$

The polygons are similar, but not necessarily drawn to scale. Find the values of x and y.
\qquad 33.

a. $x=\frac{11}{2}, y=\frac{59}{4}$
b. $x=\frac{11}{2}, y=27$
c. $x=9, y=\frac{59}{4}$
d. $x=9, y=27$
34. If one measurement of a golden rectangle is 8.8 inches, which could be the other measurement?
a. 14.238 in .
b. $\quad 10.418 \mathrm{in}$.
c. 7.182 in.
d. 1.618 in.
35. Which group contains triangles that are all similar?
a.

b.

c.

d.

State whether the triangles are similar. If so, write a similarity statement and the postulate or theorem you used.
36.

a. $\triangle A B C \sim \triangle M N O$; SSS
c. $\triangle A B C \sim \triangle M N O$; AA
b. $\triangle A B C \sim \triangle M N O$; SAS
d. The triangles are not similar.

Explain why the triangles are similar. Then find the value of \boldsymbol{x}.
\qquad 37.

Not drawn to scale
a.
SSS Postulate; $5 \frac{1}{3}$
c. SAS Postulate; $13 \frac{1}{3}$
b.
AA Postulate; $13 \frac{1}{3}$
d. AA Postulate; $5 \frac{1}{3}$
38. Campsites F and G are on opposite sides of a lake. A survey crew made the measurements shown on the diagram. What is the distance between the two campsites? The diagram is not to scale.

a. $\quad 42.3 \mathrm{~m}$
b. $\quad 47.4 \mathrm{~m}$
c. $\quad 73.8 \mathrm{~m}$
d. $\quad 82.8 \mathrm{~m}$

Solve for \boldsymbol{x}.

39.

Not drawn to scale
a. 20
b. 6
c. $2 \sqrt{5}$
d. 9

The figures are similar. The area of one figure is given. Find the area of the other figure to the nearest whole number.
40. A rectangular napkin costs $\$ 3.25$. A similar tablecloth is five times longer and five times wider. How much would you expect to pay for the tablecloth?
a. $\quad \$ 81.25$
b. $\$ 48.75$
c. $\quad \$ 16.25$
d. $\$ 32.50$
41. Write the tangent ratios for $\angle Y$ and $\angle Z$.

Not drawn to scale
a. $\tan Y=\frac{6}{7} ; \tan Z=\frac{7}{6}$
b. $\tan Y=\frac{\sqrt{85}}{7} ; \tan Z=\frac{\sqrt{85}}{6}$
c. $\tan Y=\frac{7}{6} ; \tan Z=\frac{6}{7}$
d. $\tan Y=\frac{7}{\sqrt{85}} ; \tan Z=\frac{6}{\sqrt{85}}$

Find the value of x. Round your answer to the nearest tenth.
42.

Not drawn to scale
a. 3.3
b. 3.1
c. 24.7
d. 8.5
43. Viola drives 170 meters up a hill that makes an angle of 6° with the horizontal. To the nearest tenth of a meter, what horizontal distance has she covered?
a. $\quad 171.5 \mathrm{~m}$
b. 169.1 m
c. $\quad 1617.4 \mathrm{~m}$
d. 17.8 m

Find the value of x. Round the length to the nearest tenth.
44.

Not drawn to scale
a. $\quad 7.1 \mathrm{~cm}$
b. 13.1 cm
c. 9.2 cm
d. 8.4 cm

Use compass directions to describe the direction of the vector.
(Not drawn to scale)
45.

a. 84° north of west
b. 84° south of west
c. 84° south of east
d. 84° north of east

Find the magnitude and direction of the vector. Round length to nearest tenth and degree to the nearest unit. (Not drawn to scale)
46.

a. about $586.7 \mathrm{mi} ; 30^{\circ}$ south of east
c. about $30 \mathrm{mi} ; 586.7^{\circ}$ south of east
b. about $586.7 \mathrm{mi} ; 30^{\circ}$ south of west
d. about $30 \mathrm{mi} ; 586.7^{\circ}$ south of west
47. Miguel is driving his motorboat across a river. The speed of the boat in still water is $13 \mathrm{mi} / \mathrm{h}$. The river flows directly south at $5 \mathrm{mi} / \mathrm{h}$. If Miguel heads directly west, what are the boat's resultant speed and direction? (Not drawn to scale)

a. $21 \mathrm{mi} / \mathrm{h} ; 13.9^{\circ}$ north of west
b. $\quad 13.9 \mathrm{mi} / \mathrm{h} ; 21^{\circ}$ south of west
c. $\quad 13.9 \mathrm{mi} / \mathrm{h} ; 21^{\circ}$ north of west
d. $21 \mathrm{mi} / \mathrm{h} ; 13.9^{\circ}$ south of west
48. The Ruffs are planning to buy an above-ground swimming pool shaped as a regular octagon. The radius of the octagon is 9 feet. To the nearest tenth, find the area of the surface of the water in the pool.
a. $\quad 458.2 \mathrm{ft}^{2}$
b. $\quad 553.1 \mathrm{ft}^{2}$
c. $\quad 94.8 \mathrm{ft}^{2}$
d. $229.1 \mathrm{ft}^{2}$

Find the area of the triangle. Give the answer to the nearest tenth. The drawing may not be to scale.
\qquad 49.

a. $\quad 10.5 \mathrm{~m}^{2}$
b. $9.8 \mathrm{~m}^{2}$
c. $\quad 19.6 \mathrm{~m}^{2}$
d. $21.0 \mathrm{~m}^{2}$
50. Which three-dimensional figure matches this net?

a.

C.

b.

d.

51. Match the isometric drawing with the correct orthographic drawing.

52. A jewelry store buys small boxes in which to wrap items that they sell. The diagram below shows one of the boxes. Find the lateral area and the surface area of the box to the nearest whole number.

Not drawn to scale
a. $90 \mathrm{~cm}^{2} ; 146 \mathrm{~cm}^{2}$
b. $90 \mathrm{~cm}^{2} ; 206 \mathrm{~cm}^{2}$
c. $\quad 181 \mathrm{~cm}^{2}$; $206 \mathrm{~cm}^{2}$
d. $181 \mathrm{~cm}^{2} ; 146 \mathrm{~cm}^{2}$

Find the surface area of the cylinder in terms of π.
\qquad 53.

Not drawn to scale
a. $518 \mathrm{~cm}^{2}$
b. $602 \pi \mathrm{~cm}^{2}$
c. $812 \pi \mathrm{~cm}^{2}$
d. $308 \pi \mathrm{~cm}^{2}$

Find the surface area of the pyramid shown to the nearest whole number.
\qquad 54.

Not drawn to scale
a. $85 \mathrm{ft}^{2}$
b. $145 \mathrm{ft}^{2}$
c. $60 \mathrm{ft}^{2}$
d. $25 \mathrm{ft}^{2}$

Find the volume of the square pyramid shown. Round to the nearest tenth as necessary.
\qquad 55.

Not drawn to scale
a. $40 \mathrm{~cm}^{3}$
b. $480 \mathrm{~cm}^{3}$
c. $\quad 147.3 \mathrm{~cm}^{3}$
d. $720 \mathrm{~cm}^{3}$
56. What is the maximum volume of a pyramid that can fit inside a cube that has side 18 cm long?
a. $5832 \mathrm{~cm}^{3}$
b. $2916 \mathrm{~cm}^{3}$
c. $\quad 1944 \mathrm{~cm}^{3}$
d. $972 \mathrm{~cm}^{3}$
57. A rectangular pyramid fits exactly on top of a rectangular prism. The prism has length 15 cm , width 5 cm , and height 7 cm , and the pyramid has height 13 cm . Find the volume of the composite space figure.
a. $\quad 1500 \mathrm{~cm}^{3}$
b. $500 \mathrm{~cm}^{3}$
c. $2275 \mathrm{~cm}^{3}$
d. $850 \mathrm{~cm}^{3}$

Find the volume of the cone shown as a decimal rounded to the nearest tenth.
58.

Not drawn to scale
a. $366.5 \mathrm{yd}^{3}$
b. $\quad 1026.3 \mathrm{yd}^{3}$
c. $73.3 \mathrm{yd}^{3}$
d. $549.8 \mathrm{yd}^{3}$

Short Answer

59. Find the values of the variables and the lengths of the sides of this rectangle. The diagram is not to scale.

Consider the cube shown below.

a. Draw a cross section formed by a plane intersecting the cube as described below.
b. Describe the cross section.
60. The plane intersects three adjacent faces.

