Least Common Denominator

you can find and use the least common denominator you add mixed numbers.

Example

Find
$$2\frac{1}{3} + 1\frac{5}{12}$$
.
Estimate. $2\frac{1}{2} + 1\frac{1}{2} = 4$

STEP 1

Find the LCD. Write equivalent fractions.

$$2\frac{1}{3} = 2\frac{4}{12}$$
$$+1\frac{5}{12} = +1\frac{5}{12}$$

STEP 2

Add the fractions.

$$2\frac{1}{3} = 2\frac{4}{12}$$

$$+1\frac{5}{12} = +1\frac{5}{12}$$

$$\frac{9}{12}$$

Add the whole numbers. Write the answer in simplest form if needed.

$$2\frac{1}{3} = 2\frac{4}{12}$$

$$+1\frac{5}{12} = +1\frac{5}{12}$$

$$3\frac{9}{12} = 3\frac{3}{4}$$

So, $2\frac{1}{3} + 1\frac{5}{12} = 3\frac{3}{4}$. Since $3\frac{3}{4}$ is close to the estimate, 4, the answer is reasonable.

More Examples

$$5\frac{7}{9} = 5\frac{7}{9}$$

$$+4\frac{1}{3} = +4\frac{3}{9}$$

$$9\frac{10}{9} = 10\frac{1}{9}$$

$$14\frac{3}{4} = 14\frac{9}{12}$$

$$+12\frac{1}{6} = +12\frac{2}{12}$$

$$26\frac{11}{12}$$

• Why is estimating a good method for checking your answer?

MATH IDEA Make a model or use the LCD to add mixed numbers.

Check

1. Explain why in Example B, $9\frac{10}{9}$ was renamed as $10\frac{1}{9}$.

Find the sum in simplest form. Estimate to check.

2.
$$1\frac{1}{4}$$
 $+2\frac{1}{2}$

3.
$$2\frac{5}{8} + 1\frac{1}{2}$$

4.
$$5\frac{1}{3}$$

5.
$$4\frac{5}{9}$$

6.
$$8\frac{5}{6}$$
 $+3\frac{1}{3}$

7.
$$4\frac{5}{12} + 1\frac{1}{6}$$

8.
$$1\frac{1}{5} + 3\frac{2}{5}$$

9.
$$9\frac{3}{4} + 8\frac{1}{2}$$

10.
$$9\frac{4}{5} + 2\frac{3}{10}$$

Practice and Problem Solving

Extra Practice, page 380, Set

Find the sum in simplest form. Estimate to check.

11.
$$4\frac{2}{3} + 2\frac{1}{3}$$

12.
$$3\frac{1}{2} + 1\frac{1}{4}$$

13.
$$5\frac{7}{9} + 3\frac{1}{3}$$

14.
$$5\frac{2}{5}$$
 $+1\frac{3}{10}$

15.
$$4\frac{7}{12} + 1\frac{2}{3}$$

16.
$$2\frac{3}{5}$$
 $+2\frac{3}{10}$

17.
$$3\frac{2}{3}$$
 $+4\frac{1}{12}$

18.
$$5\frac{1}{6} + 1\frac{11}{12}$$

19.
$$2\frac{1}{8} + 3\frac{1}{2}$$

20.
$$1\frac{1}{5}$$
 $+1\frac{3}{4}$

21.
$$7\frac{3}{4} + 4\frac{7}{12}$$
 22. $4\frac{5}{8} + 2\frac{1}{4}$ **23.** $5\frac{5}{8} + 2\frac{1}{4}$

22.
$$4\frac{5}{8} + 2\frac{1}{4}$$

23.
$$5\frac{5}{8} + 2\frac{1}{4}$$

24.
$$4\frac{3}{4} + 3\frac{5}{12}$$

25.
$$6\frac{1}{3} + 3\frac{1}{4}$$

26.
$$5\frac{11}{12} + 2\frac{1}{4}$$
 27. $4\frac{3}{4} + 2\frac{3}{8}$

27.
$$4\frac{3}{4} + 2\frac{3}{8}$$

28.
$$7\frac{1}{2} + 1\frac{1}{16}$$

Find the value of n. Identify the addition property used.

29.
$$0 + n = 3\frac{1}{2}$$

30.
$$5\frac{1}{3} + 8 = n + 5\frac{1}{3}$$

29.
$$0 + n = 3\frac{1}{2}$$
 30. $5\frac{1}{3} + 8 = n + 5\frac{1}{3}$ **31.** $\frac{2}{7} + (n + \frac{4}{7}) = (\frac{2}{7} + 6\frac{2}{7}) + \frac{4}{7}$

32.
$$4\frac{4}{5} + n = 4\frac{4}{5}$$
 33. $n + n = 3\frac{1}{2}$ **34.** $n + 2\frac{3}{5} = 4$ **35.** $3\frac{1}{6} + n = 11\frac{5}{6}$

33.
$$n + n = 3\frac{1}{2}$$

34.
$$n+2\frac{3}{5}=4$$

35.
$$3\frac{1}{6} + n = 11\frac{5}{6}$$

USE DATA For 36-38, use the line graph.

The Appalachian Trail goes through Damascus in southwest Virginia. Damascus is known as the "friendliest town on the Appalachian Trail."

- 36. Does the precipitation in Damascus increase or decrease from January to March? Explain how you know.
- **37.** Find the total precipitation for 3 consecutive months of the year. beginning in January.
- 38. Write a problem, using the information in the graph, that you can solve by adding mixed numbers.
- **39.** This week, Amanda worked $2\frac{1}{2}$ hours on Monday, $1\frac{2}{3}$ hours on Tuesday, and $2\frac{1}{3}$ hours on Wednesday. How many hours did she work this week?

Jan Feb Mar Apr May Jun

Month

40. Vocabulary Power Sometimes companies advertise that they will give a free estimate. Explain what a free estimate is.

3

0

Subtract Mixed Numbers

Quick Review

- 1. $1 \frac{1}{3}$ 2. $\frac{5}{6} \frac{2}{3}$
- 3. $\frac{2}{3} \frac{2}{9}$ 4. $\frac{3}{4} \frac{2}{3}$
- 5. $1-\frac{4}{5}$

Learn

ALL ABOARD! Jacob collects model trains. He is setting up the track for one of his models. He bought $3\frac{1}{2}$ feet of new track, but $1\frac{1}{4}$ feet of it were damaged. How many feet of new track were not damaged?

Example Subtract. $3\frac{1}{2} - 1\frac{1}{4}$ First, make an estimate. $3\frac{1}{2} - 1 = 2\frac{1}{2}$

One Way Use a model.

To subtract $1\frac{1}{4}$, replace the $\frac{1}{2}$ bar with $\frac{1}{4}$ bars.

Subtract $1\frac{1}{4}$. $3\frac{1}{2} - 1\frac{1}{4} = 3\frac{2}{4} - 1\frac{1}{4} = 2\frac{1}{4}$

Another Way Use the LCD.

$$3\frac{1}{2} = 3\frac{2}{4}$$
 Find the LCD. Write equivalent

$$-1\frac{1}{4} = -1\frac{1}{4}$$
Subtract the fractions and the whole numbers.

2½Write the difference in simplest form.

So, $2\frac{1}{4}$ feet of new track were not damaged. Since $2\frac{1}{4}$ is close to the estimate of $2\frac{1}{2}$, $2\frac{1}{4}$ is reasonable.

You can also use a calculator that operates with fractions to subtract mixed numbers.

The Toy Train Museum in Kenner, Louisiana

$$3\frac{1}{2} - 1\frac{1}{4} = 2\frac{1}{4}$$

Check

1. Explain how you can tell your answer is reasonable when subtracting mixed numbers.

find the difference in simplest form. Estimate to check.

2.
$$5\frac{3}{4}$$
 $-2\frac{1}{8}$

3.
$$9\frac{1}{2}$$

4.
$$5\frac{7}{9}$$
 $-3\frac{1}{9}$

5.
$$3\frac{2}{3}$$
 $-1\frac{5}{12}$

practice and Problem Solving Extra Practice, page 380, Set B

Find the difference in simplest form. Estimate to check.

6.
$$7\frac{11}{12}$$

$$-4\frac{5}{6}$$

7.
$$5\frac{5}{8}$$
 $-2\frac{1}{4}$

8.
$$6\frac{1}{3}$$
 $-3\frac{1}{4}$

9.
$$4\frac{7}{10}$$
 $-2\frac{3}{10}$

10.
$$8\frac{3}{5}$$
 $-3\frac{3}{10}$

11.
$$5\frac{7}{12} - 4\frac{1}{3}$$

11.
$$5\frac{7}{12} - 4\frac{1}{3}$$
 12. $6\frac{3}{4} - 2\frac{5}{16}$ 13. $3\frac{8}{9} - 1\frac{5}{9}$ 14. $7\frac{3}{5} - 2\frac{1}{4}$

13.
$$3\frac{8}{9} - 1\frac{5}{9}$$

14.
$$7\frac{3}{5} - 2\frac{1}{4}$$

15.
$$n-1\frac{1}{2}=3$$

16.
$$3\frac{5}{n} - 1\frac{3}{8} = 2\frac{1}{4}$$

17.
$$4\frac{3}{5} - n = 1\frac{2}{15}$$

15.
$$n - 1\frac{1}{2} = 3$$
 16. $3\frac{5}{n} - 1\frac{3}{8} = 2\frac{1}{4}$ **17.** $4\frac{3}{5} - n = 1\frac{2}{15}$ **18.** $8\frac{n}{6} - 3\frac{1}{6} = 5\frac{2}{3}$

USE DATA For 19-20, use the table.

- 19. How much longer is the S scale caboose than the HO scale caboose?
- 20. In which scale is the caboose $2\frac{7}{10}$ inches longer than a caboose in N scale?

	MC	DEL TRAIN CA	BOOSE SIZES		
Scale	0	S	НО	N	Z
Size (in.)	6	$4\frac{1}{2}$	$3\frac{1}{3}$	$1\frac{4}{5}$	$\frac{3}{4}$

21. What's the Error? Marty compared the length of four Z scale cabooses with the length of one HO scale caboose. He said they are the same. Describe his error and write the correct answer.

Getting Ready for F(AT -

22. Each week students volunteer at a local hospital. They record their hours in a table. Find the difference between the greatest number of volunteer hours and the least number of hours.

A.
$$2\frac{1}{6}$$
 hours

B.
$$2\frac{1}{3}$$
 hours **D.** $3\frac{1}{6}$ hours

D.
$$3\frac{1}{6}$$
 hours

MOUNT HOPE HOSPITAL			
Student	Volunteer Hours		
George	5 2		
Jake	31/2		
Erica	5 1		
Tina	2 5		
Zach	21/2		